

HydroPlus

Technical Manual

 Updated: March 9, 2022

i-Tree is a cooperative initiative

3

This document is intended to facilitate use and development of the HydroPlus environmental

model suite – referred to as HydroPlus in reference to its source code – used as the backend for

i-Tree Hydro, i-Tree Cool Air, and in the future potentially other models developed by the iTree-

ESF collaborative. Some history is included to provide context and institutional knowledge.

Serving as an ad hoc FAQ for the researchers developing and using HydroPlus, this document

is expected to evolve and expand over time to include basic information about code architecture

and common development practices (e.g. how to add new functions and inputs); explanation

and solutions to common problems that come up when working with these complex models; and

different options or configurations possible for running this code.

As HydroPlus is part of the i-Tree Research Suite, i-Tree Tools’ usual level of technical support

and documentation is not available for HydroPlus. This document is intended for readers with a

moderate level of expertise in environmental and computer science. Technical support is not

available for free, but expert consultation can be arranged. If interested in consultation, reach

out to the i-Tree Team at info@itreetools.org.

The use of trade, firm, or corporation names in this publication is solely for the information

and convenience of the reader. Such use does not constitute an official endorsement or

approval by the U.S. Department of Agriculture or the Forest Service of any product or

service to the exclusion of others that may be suitable. The software distributed under the

label “i-Tree Suite” is provided without warranty of any kind. Its use is governed by the End

User License Agreement (EULA) to which the user agrees before installation.

The i-Tree Development Team actively seeks feedback on any component of the project: the

software suite itself, the manuals, or the process of development, dissemination, support, and

refinement. Please send comments through any of the means listed on the i-Tree support page:

www.itreetools.org/support/.

About

 Introduction

 Disclaimer

 Feedback

mailto:info@itreetools.org
//www.itreetools.org/support/

4

Components of the i-Tree software suite have been developed over the last few decades by the

U.S. Forest Service and numerous cooperators. Support for the development and release of the

2019 i-Tree software suite has come from USDA Forest Service Research, State and Private

Forestry, and their cooperators through the i-Tree Cooperative Partnership of the Davey Tree

Expert Company, Arbor Day Foundation, Society of Municipal Arborists, International Society of

Arboriculture, Casey Trees, and State University of New York College of Environmental Science

and Forestry.

The i-Tree Cool Air model was originally developed by Drs. Yang Yang, SUNY College of

Environmental Science and Forestry (SUNY-ESF), Ted Endreny (SUNY-ESF), and David J.

Nowak, USDA Forest Service, Northern Research Station (USFS-NRS). The model code has

been improved and integrated within i-Tree based on the work of Thomas Taggart (SUNY-ESF),

Shannon Conley (Davey Institute), Robert Coville (Davey Institute), Vamsi Kodali (Syracuse

University), Sneha Patil (Syracuse University), Arpit Shah (Syracuse University), and Reza Abdi

(SUNY-ESF). i-Tree Cool Air uses i-Tree Hydro as its underlying hydrology model.

The i-Tree Hydro model was originally developed by Drs. Jun Wang SUNY College of

Environmental Science and Forestry (SUNY-ESF), Ted Endreny (SUNY-ESF), and David J.

Nowak, USDA Forest Service, Northern Research Station (USFS-NRS). The model code has

been improved and integrated within i-Tree based on the work of Megan Kerr (Davey Institute),

Yang Yang (SUNY-ESF), Sanyam Chaudhary (Syracuse University), Rahul Kumbhar (Syracuse

University), Yu Chen (Syracuse University), Thomas Taggart (SUNY-ESF), Shannon Conley

(SUNY-ESF), Pallavi Iyengar (Syracuse University), Jeevitha Royapathi (Syracuse University),

Robert Coville (Davey Institute), Isira Samarasekera (Syracuse University), Vamsi Kodali

(Syracuse University), Sunit Vijayvargiya (Syracuse University), Sneha Patil (Syracuse

University), Arpit Shah (Syracuse University), Akshay (Syracuse University), and Reza Abdi

(SUNY-ESF). Topographic Index calculations have been improved with algorithms developed

for WhiteBox GAT (Lindsay, 2016) with permission by its creator John Lindsay, PhD (University

of Guelph).

Many other individuals have contributed to the design, development, testing process, and help

text including Scott Maco (Davey Institute), Mike Binkley (Davey Institute), David Ellingsworth

(Davey Institute), Dr. Satoshi Hirayabashi (Davey Institute), Dr. Jim Fawcett (Syracuse

University), Emily Stephan (SUNY-ESF), Evan Williams (SUNY-ESF), Ryan Morrison (SUNY-

ESF), James Kruegler (SUNY-ESF), and Jeremy Hatfield (SUNY-ESF). This Technical Manual

was written & designed by Robert Coville (Davey Institute) based on the i-Tree Hydro v6 User

Manual and software development notes from Shannon Conley (Davey Institute), Ted Endreny

(SUNY-ESF), and Reza Abdi (SUNY-ESF).

Acknowledgements

5

About .. 3

Introduction .. 3

Disclaimer .. 3

Feedback ... 3

Acknowledgements ... 4

Table of Contents ... 5

Getting Started ... 7

Green Infrastructure ... 7

A Basic Workflow for Running GI .. 7

Inputs & Running HydroPlus Models ... 8

Introduction to Using HydroPlus .. 8

Required Input Files .. 8

Config File (HydroPlusConfig.xml) .. 9

Config File settings applicable to all models .. 9

Config File settings for Hydro .. 9

Config File settings for Cool Air ..14

Weather data ...15

Auto-calibration from a Command Line Interface (CLI) ..15

Autocalibration setup files ..16

Autocalibration, fresh start, summary ...16

Autocalibration, fresh start, in detail ...16

Autocalibration, retry with new observations ..21

Outputs ..21

Hydrology model outputs ...21

Green Infrastructure outputs ..22

Vertical (Depth) and Final (Volumetric) Water Budgets ..22

Hydro Extended Output Header Definitions ..22

Temperature model outputs ...24

Cell-based Output ..24

Time-based Output ..25

Table of Contents

6

Tips & Troubleshooting ..28

Local work environment ...28

Version Control and Testing ..28

Version Control ..28

Locations ...28

SVN Concepts and Definitions ...29

TortoiseSVN Subversion Control Procedures ..29

Git Subversion Control Procedures ..30

SOP for Testing Code ...31

Procedure for Running Test Script ...31

SOP for Developing New Features ..32

Development Notes...33

Visual Studio setup for developing & testing code ...33

Config file modifications ...34

Batch superficial changes (file only, no code changes) ..34

Code changes associated with config file changes ..37

Running HydroPlus in sub-hourly timesteps (Jan 21, 2019) ...37

Land cover scaling simulations (LCscaling utility) ..38

Hydro LCscaling analysis ...38

Cool Air LCscaling analysis ..39

Conditions for TC+IC != 100% ...39

Functors ..39

Build settings ...40

Feedback on C++ methods for GI dev (Oct 18, 2018) ...41

Calculation Classes ...41

The DataFolder class ...42

Development method and troubleshooting ...44

Architecture development Q&A for GI (Oct 26, 2018) ..44

GI Config Instruction (Dec 23, 2021) ...48

7

As a first step to using HydroPlus for your own projects, we recommend using HydroPlus Test Cases to
begin familiarizing yourself with the available models and settings. Test Cases are maintained as part of
HydroPlus development, and these Test Cases offer a comprehensive look at what each model requires
as inputs and offers as outputs.

To view available Test Cases, open Windows Explorer and navigate to the following directory:
…\HydroPlus\TestingFilesAndScript\TestCases\

There you’ll find testing inputs and outputs organized in the following folder hierarchy:

- HydroPlus model
o Input/output configurations available for the model

▪ Functional input set
▪ Outputs from test simulation
▪ Expected output serving as a standard to compare tests against

For a list of what Test Cases are available are how they are used for testing, please explore this manual’s
section on our SOP for Testing Code. To try running a single Test Case, which is the recommended
starting point for new HydroPlus users, please choose a Test Case of interest from the SOP for Testing
Code then proceed through the Inputs & Running HydroPlus Models section.

Green infrastructure features are available in the latest StatisticalHydro model mode, designed based on

the EPA SWMM model’s LID modules. As described above, we recommend starting with TestCases to

ensure you can run those validated scenarios before venturing into your own project creation.

Begin with powIR_defaultParams_noTI test case for best comparability with Hydro GUI input/output.

Then explore the GI test cases, there is one available for each GI structure type.

A Basic Workflow for Running GI

1. Open master config file(s) from Test Cases for GI of interest

2. Copy dataFolder(s) for GI of interest into your own project config file

3. Adjust parameters in each GI dataFolder. When unsure what value to give a parameter, you can

refer to parameter values from your project's BulkArea dataFolder or from the GI's TestCase

parameters. For more guidance on GI parameterization, see Config File settings for Hydro >

Green Infrastructure.

4. Save config file & run HydroPlus.exe same as without GI (Inputs & Running HydroPlus Models).

5. Access outputs as you would without GI (Outputs).

Getting Started

 Green Infrastructure

8

Introduction to Using HydroPlus

To run any of the models within HydroPlus, the HydroPlus executable file must be run along with a

command line argument giving the path to the input files without any trailing slash.

For example, the following could be run in a Windows command line interface:

C:\HydroPlus\x64\Release\HydroPlus.exe C:\HydroPlus\Inputs

The program will look in the inputs directory for a configuration file “HydroPlusConfig.xml”. The config

file determines what model is run and with what settings and parameters. Different input files are

needed depending on which model is run. HydroPlus includes the following models:

- StatisticalHydro: the hydrology model used by i-Tree Hydro, operating in a semi-distributed aka

statistically-distributed framework.

- GI: a version of StatisticalHydro which includes green infrastructure features based on the EPA

SWMM model and the work of Endreny & Abdi in 2019.

- SpatialTemperatureHydro: the air temperature model referred to as i-Tree Cool Air or originally

PASATH, operating in a raster-based spatially-distributed framework. This model uses

StatisticalHydro’s hydrology routines where possible.

 More information about the Config File is available later in this section.

Required Input Files

StatisticalHydro

The following input files are expected in the input directory for the Hydro model to run:

- HydroPlusConfig.xml

- dem.dat

o OR powdecayTI.dat when config file includes <Infiltration>PowerDecay</Infiltration>

▪ PowerDecay intended for use with a DEM or a powdecayTI file from HydroPlus;

if a DEM is used, Hydro will subsequently produce a powdecayTI.dat file

o OR expdecayTI.dat when config includes <Infiltration>ExponentialDecay</Infiltration>

▪ ExponentialDecay intended for use with the TI files preloaded from Hydro GUI

- weather.dat & Evaporation.dat (Pre-processed files; raw from NOAA NCDC, preprocessed using

the Hydro GUI. See Hydro User Manual for more information on weather data.)

- Pollutiondata.dat (Model can run without this but no water quality results will be written)

- Qobs.dat (Only needed when config file does not include

<CalibrationTimeStep>NoCalibration</CalibrationTimeStep>)

Inputs & Running HydroPlus Models

9

See Hydro v6 User Manual about StatisticalHydro model inputs, and Abdi 2019 about GI inputs.

SpatialTemperatureHydro

The following input files are expected in the input directory for the Cool Air model to run:

- HydroPlusConfig.xml

- dem.dat

- Weather.dat

- Evaporation.dat (used only for Snow evaporation potentials)

- SolarRadiation.dat

- Blockgroupmap.dat (optional)

- treecover.dat

- imperviousCover.dat

- landcover.dat

Config File settings applicable to all models

OutputDirectory is the full path to the directory which output files will be written to, ending with \

Note that commenting out tags is ineffective: if a tag is written in the file that the code looks for, it will

activate and grab values for that tag. Instead, to disable tags, the tags of interest must be wrapped in a

<DISABLE></DISABLE> set of tags.

Example Config File with Comments Explaining Parameters - August 23, 2019

The HydroPlusConfig-commented.xml file in /TestingFilesAndScript/TestCases/StatHydro/ is for the

semi-spatially distributed Hydro model. It includes in-line comments to clarify XML configuration file

options. Parameter names listed here correspond with parameters described in the i-Tree Hydro v6 User

Manual’s Table of Hydrological Parameters.

For more information about HydroPlus Test Cases and the background for this Test Case see the SOP for

Testing Code section.

File Version Info: This example config file has the semi-distributed Hydro model running in power decay

infiltration rate mode, with extended outputs disabled and using i-Tree Hydro v6.3 GUI default

hydrological parameters. This version is the latest as of August 23, 2019 from code repository revision

427 path

…\HydroPlus\TestingFilesAndScript\TestCases\StatHydro\powIR_defaultParams\input\HydroPlusConfig.

xml

Config File settings for Hydro

 Config File (HydroPlusConfig.xml)

https://www.itreetools.org/resources/manuals/Hydro_Manual_v6.pdf
https://www.itreetools.org/documents/532/Abdi-Reza_PhD-Dissertation_ESF_2019.pdf
http://www.itreetools.org/resources/manuals/Hydro_Manual_v6.pdf
http://www.itreetools.org/resources/manuals/Hydro_Manual_v6.pdf

10

All parameters within the <DataDrawer> section of the config file are used for semi-distributed Hydro

simulations. The i-Tree Hydro v6 User Manual has more information about how to inform

parameterization of the model. See the Table of Hydrological Parameters for suggested defaults and

ranges for parameters. The Example Config File with Comments Explaining Parameters - August 23, 2019

associates config file parameter tags with the parameter names used in the i-Tree Hydro v6 User

Manual.

Green Infrastructure

Refer to Getting Started with Green Infrastructure for basic instruction on interacting with GI features.

In this section, more technical details are provided as orientation for GI’s unique inputs in HydroPlus.

In a config file, GI features can be enabled by adding DataFolders with Type set to a GI structure type. GI

can be parameterized as aggregate or individual representations of each GI Type:

- Aggregate representation of GI: Each DataFolder can describe the aggregate & average statistics

representing all GI structures of a certain type. This ‘lumped’ or ‘semi-distributed’

representation is the approach used for the ‘bulk area’ of projects run in the Hydro GUI and the

StatisticalHydro mode of HydroPlus.

- Individual representation of GI: Each DataFolder can represent an individual GI structure, with

multiple DataFolders to represent multiple instances of GI within a DataDrawer for all GI of the

same type.

GI model schematics

The following figures about GI modeling in HydroPlus are provided below, from HydroPlus GI developers

at SUNY-ESF:

http://www.itreetools.org/resources/manuals/Hydro_Manual_v6.pdf

11

Fig. 1. The schematic design of the bioretention cell (a), vegetation swale (b), infiltration trench (c),

permeable pavement (d), roof disconnection (e), rain barrel (f), and green roof (g). In the figure, the

term q represents the water flow to and from the GI design with the substrates of 0 for the inflow, 1 for

the surface outflow, 3 for the underdrain, e for the emergency spillway outflow, and s for the base flow.

The term f represents the movement of water in the vertical direction with the substrates of 1 for the

infiltration, 2 for the percolation, 3 for exfiltration, and 4 for percolation through the pavement. The hb is

the outflow pipe height from the surface, he is the emergency spillway outflow height, and hp is the drain

(e)

(g)

(f)

12

offset height. In panel (b), L is the length of the swale, A is the swale area, b is the bottom width, P is the

rainfall, E is the evaporation, and m is the side slope.

Fig 2. The schematic of the flow variables in i-Tree Hydro and SWMM overlaid with the i-Tree Hydro

model structure. In the figure P is the precipitation, Pi is the canopy interception, Sp is the pervious

depression storage, Si is the impervious depression storage e3 is the vegetation evaporation, qs is the

base flow, I is the infiltration, Lr is the maximum root zone depth, lrz is the root zone storage, qrz is the

root zone to unsaturated zone percolation, and quz is the unsaturated zone to saturated zone

percolation. The terms f1, f2, and f3 referred the infiltration, percolation, and exfiltration respectively in

SWMM.

Fig. 3. The sub-catchment S4 (a) has been used in the simulations without applying the GI devices (b)

and after adding the GI devices (c).

13

GI parameter descriptions

Notes about unique GI parameters and relevant figures are provided below, from HydroPlus GI

developers at SUNY-ESF:

1. <soilCondSlope>10.0</soilCondSlope> <!-- soil conductivity slope: Slope of the curve of

log(conductivity) versus soil moisture content (dimensionless). Typical values range from 5 for

sands to 15 for silty clay. -->

2. <drainOffset>0.05</drainOffset>: from the bottom (to trap sediment).

E.g. The height and volume of the rain barrel/cistern would be determined by commercially

available sizes. The drain offset is typically 6 inches from the bottom (to trap sediment).

Once the water height in the storage layer reaches the drain’s offset height, any inflow from

percolation out of the soil layer will immediately flow out of the underdrain as long as its flow

rate is below 15 in/hr (as per Equation 6-8) and the storage volume above the offset height will

never be used.

3. drainOrificeQ_coef and drainOrificeQ_exponent:

drainOrificeQ_coef is drain.coeff in SWMM code, C3D in SWMM manual.

drainOrificeQ_exponent is drain.expon in SWMM code, η3D in SWMM manual.

outflow = folder->ParamDict["drainOrificeQ_coef"] * pow(head,
folder->ParamDict["drainOrificeQ_exponent"])

Storage

Soil

Surface

Offset

e

Underdrain

14

4. <initiallySat_frac>0.0</initiallySat_frac>

folder->ParamDict["initiallySat_frac"] = (1.0 -
(folder->ParamDict["SD0_percent"] / 100.0));

SD0_percent: initial upper soil zone saturation percent

Not defined in config file, but in code. May need to be removed.

5. <storClogFactor>0.0</storClogFactor>

storage.clogFactor in SWMM

To get the exfiltration (called infiltration in SWMM, Exfiltration in UH)

// infiltration rate = storage storage conductivity (seepage rate) reduced by
any clogging

exfil = folder->ParamDict["seepageRate_mph"] * (1.0 - clogFactor);

For more guidance on GI parameterization: explore commented example GI config file

(\HydroPlus\TestingFilesAndScript\TestCases\StatHydro\GI\HydroPlusConfig_GI-commented.xml);

review Abdi 2019 (section 5.2 describes GI methods, Table 13 & Table 17 list GI TestCases’ parameters);

SWMM LID documentation; and the Hydro v6 User Manual.

Simulating Multiple Hydrologic Structures

Each <DataFolder> represents a hydrologic structure within the project, and most projects are

represented entirely by the BulkArea parameters of a single DataFolder. When simulating Green

Infrastructure), multiple DataDrawer or DataFolder tags may be setup to represent different GI structure

types and individual GI structures.

Config File settings for Cool Air

The temperature model gathers hydrological parameters from the first DataFolder in the config file. That

DataFolder generally represents the Bulk Area, which is the entire project area for most Hydro projects.

For parameters included in Cool Air-specific inputs, such as treecover.txt, the Cool Air-specific input

option is used instead of inputs from the DataFolder.

TemperatureLocationParams orient the model about the raster inputs. The inputs in the config file

should match what would be in the header of raster input files. The required

TemperatureLocationParams are nCols, nRows, cellsize, xllcorner, yllcorner. If NODATA_value is defined

for raster inputs, it should also be defined with a NODATA tag in this config file parameter group.

TemperatureExecutionParams is the parameter group in the config file that defines the weather station

and what outputs are written. RefWeatherLocation is an important input for the model. The conditions

associated with the RefWeatherLocation in the gridded spatial inputs should match the conditions at the

https://www.itreetools.org/documents/532/Abdi-Reza_PhD-Dissertation_ESF_2019.pdf
https://www.itreetools.org/resources/manuals/Hydro_Manual_v6.pdf

15

observed weather data source. In most cases weather inputs come from airport weather stations with

an NLCD LC=21, Impervious Cover<30%, and Tree Cover<5%.

Config file tags for Cool Air output options are listed below. Any row in the example below can be

included or left out from your config file, except RefWeatherLocation. Copy config file rows from here

and add them to your file to add an output option. For more information about what values are

available for these different output options, see the Temperature model outputs section.

Example of all options for TemperatureExecutionParams

<TemperatureExecutionParams>

 <RefWeatherLocation>1,42</RefWeatherLocation> <!-- row,col starting at 0 -->

<PrintBlockGroupRange>All</PrintBlockGroupRange> <!-- All or delete/wrap in

DISABLE tag -->

<PrintBlockGroupRange0>1,5</PrintBlockGroupRange0> <!-- start,end of range;

additional output ranges can be set, incrementing up # at end of tag name each time -->

 <PrintRowCol>All</PrintRowCol> <!-- All or delete/wrap in DISABLE tag -->

<PrintRowCol0>row,col</PrintRowCol0> <!-- additional row,cols to print can be set,

incrementing up # at end of tag name each time -->

 <RowColOutputPeriod>All</RowColOutputPeriod> <!-- All or delete/wrap in DISABLE

tag -->

 <RowColOutputPeriod0>YYYYMMDDHH,YYYYMMDDHH</RowColOutputPeriod0> <!-- additional

output ranges can be set, incrementing up # at end of tag name each time -->

 <PrintTimeBasedResults>All</PrintTimeBasedResults> <!-- All or any Time-Based

Variables listed in UH Dev Manual separated by comma -->

 <TimeBasedOutputPeriod>All</TimeBasedOutputPeriod> <!-- All or delete/wrap in

DISABLE tag -->

 <TimeBasedOutputPeriod0>YYYYMMDDHH,YYYYMMDDHH</TimeBasedOutputPeriod0> <!--

additional output ranges can be set, incrementing up # at end of tag name each time -->

</TemperatureExecutionParams>

Weather data acquisition and preprocessing has changed as of Spring 2020 to accommodate changes

from our weather data provider, U.S. NOAA. The latest procedure works for i-Tree Hydro and Cool Air

models. It generates three files, two of which are required by Hydro and all three of which are required

by Cool Air. That procedure is documented in an i-Tree Support forum FAQ on Weather Data Inputs,

under the “Using a raw weather file” section: https://forums.itreetools.org/viewtopic.php?f=35&t=1248

The original model in HydroPlus, referred to as UFORE-Hydro (Wang et al. 2008), was autocalibrated

using the PEST utility (https://pesthomepage.org). That functionality was adapted for the i-Tree Hydro

 Weather data

 Auto-calibration from a Command Line Interface (CLI)

https://forums.itreetools.org/viewtopic.php?f=35&t=1248
https://pesthomepage.org/

16

Graphical User Interface (GUI). With HydroPlus, Hydro and other models can be autocalibrated using

PEST from a CLI. Autocalibrated from a CLI may not be as convenient as GUI-based autocalibration for

some users, but this approach offers greater transparency, easier code maintenance, greater flexibility,

and greater capacity for users to troubleshoot their own projects, which are qualities prioritized for

advanced models in the i-Tree Research Suite.

Use the following steps to autocalibrate a Hydro project from a CLI. These instructions were adapted

from the PEST Manual specifically for the HydroPlus StatisticalHydro model. These instructions were

tested using Windows 10 Command Prompt, a text editor, and select PEST Suite 17.1 executable files

that are version controlled for HydroPlus at https://code.itreetools.org/ESF/Hydro/Autocalibration and

are available at https://www.itreetools.org/documents/647/HydroPlusAutocalibrationUtilities.zip. Until

autocalibration is built into HydroPlus functionality, the following procedure enables autocalibration

without the Hydro GUI.

Autocalibration setup files

These are the files you will need for running autocalibration, prepared through the following steps:

- HydroPlusConfig.TPL

- HydroPlusConfig.PAR

- HydroPlusConfig.PST

- Output.INS

- Output_Obs.OBF

Autocalibration, fresh start, summary

Here is a summary of the current steps to autocalibrate, detailed in the next section:

0. Setup a working directory

1. Run a Hydro simulation as a starting point

2. Create a TPL file

3. Create a PAR file

4. Run Tempchek

5. Create an INS file

6. Run Inschek

7. Update the OBF file

8. Run Pestgen to create a PST file

9. Update the PST file

10. Run Pestchek

11. Run Pest

12. Assess autocalibration results

Autocalibration, fresh start, in detail

https://code.itreetools.org/ESF/Hydro/Autocalibration
https://www.itreetools.org/documents/647/HydroPlusAutocalibrationUtilities.zip

17

0. Setup working directory with Hydro inputs, where you want autocalibration to run and generate

outputs. Start a command prompt, with access to HydroPlus.exe and the PEST Suite EXE files

from https://www.itreetools.org/documents/647/HydroPlusAutocalibrationUtilities.zip.

1. Run a Hydro simulation using parameters for autocalibration to start from.

a. Autocalibration needs to use output files generated using the appropriate calibration

timestep. Calibration timestep means what interval the predicted and observed data

sets should be compared in and optimized for.

By default we recommend using a weekly calibration timestep, which is defined in the

config file as <CalibrationTimeStep>Weekly</CalibrationTimeStep>. As an alternative,

we recommend trying Monthly. Daily, or especially Hourly, calibration timesteps will

extend time required for autocalibration and can lead to over-fitting parameters to

finer-resolution fluctuations in observed flow.

The <CalibrationTimeStep> parameter needs to be defined in the config file to begin

with and the same interval must be used consistently throughout each calibration

process.

2. Create a .TPL file:

a. Copy the config file and rename with the .TPL extension.

b. Add the pest header “ptf #” as the first row in that new TPL file.

c. For each parameter you want to autocalibrate, replace the parameter value with tags (in

the format of #paramname#) for PEST to find and adjust. For example, to autocalibrate

the scale parameter of soil transmissivity known as m, replace <m>0.023</m> with

<m>#m#</m> in the .TPL file. Each #paramname# tag can be any string 13 characters or

less, surrounded by # on either side. At least 3 characters should be in the

#paramname# string, as in #m #, to ensure the .TPL and other files of later steps will

write a sufficient amount of significant figures in autocalibration-generated config files

(as test-generated in step 4 below).

The Hydro v6 GUI autocalibrated the following parameters:

i. MSD: Max Depth of Water in Upper Soil Zone (m), aka Maximum root zone

storage deficit

ii. m: scale parameter of soil transmissivity

iii. T0: Soil Transmissivity at Saturation (m2/hr)

iv. PMacro: Soil Macropore fraction

We recommend these are used for autocalibration by inserting each respective PEST tag

for each parameter’s value in the .TPL file:

 #MSD #

 #m #

 #T0 #

 #PMacro#

3. Create a .PAR file: From a command line, run tempchek.exe on the TPL file (as in command

“tempchek HydroPlusConfig.tpl”). That generates a .PMT file if errors are not found. The newly-

generated .PMT file needs to be renamed to a .PAR extension (the .PMT version will not be used

https://www.itreetools.org/documents/647/HydroPlusAutocalibrationUtilities.zip

18

further for HydroPlus autocalibration). That newly converted .PAR file needs to be edited, as

shown below and in excerpt on the right from the PEST Manual figures:

a. Initial .pmt file contents: HydroPlusConfig.pmt

 t0

 m

 msd

 pmacro

b. End-of-step contents of that .PMT file, renamed to be a .par file: HydroPlusConfig.PAR

single point

 t0 0.13 1.0 0.0

 m 0.023 1.0 0.0

 msd 0.05 1.0 0.0

 pmacro 0.1 1.0 0.0

c. Format of generic .PAR file:

<header line: “single point”>

 <#paramname# from .tpl> <default value> <weighting values “1.0 0.0”>

4. Check that .PAR file is working by running tempchek <TPL file> <config file> <PAR file>, which

will write a config file using the values given in the PAR file.

Confirm the output config is good.

At this point, PEST autocalibration is ready on the input-side of the model.

Now PEST needs to be configured for the output-side of autocalibration.

This section begins at PEST Manual 18.1.4.

5. Create a new ‘instruction’ file with the calibration timestep-based

output file’s name and INS filetype, as in CaliTotalQQ.INS.

(CaliTotalQQ being output based on CalibrationTimeStep setting.)

The .INS file guides PEST on parsing model outputs for comparison

with observations. The .INS file needs a “pif #” header line, and

then a line for each observation with the following format:

<lower-case L><# of linebreaks down to next row of observations><space><observation

name><column of observation start><column of observation end>

Example (using an observation timeseries starting on line 2 of CaliTotalQQ.dat):

pif #

l2 [totalflow_1]40:54

l1 [totalflow_2]40:54

l1 [totalflow_3]40:54

l1 [totalflow_4]40:54

l1 [totalflow_5]40:54

…

19

Here is a sample Output.INS for hourly calibration for a simulation from 01/01/2015 1st hour to

12/30/2015 24rd hour (not a leap year): https://www.itreetools.org/documents/646/Output.ins

Here is a sample CaliTotalQQ.INS for weekly calibration for a simulation from 01/01/2010 1st

hour to 12/29/2010 24th hour (not a leap year):

https://www.itreetools.org/documents/671/CaliTotalQQ.ins

6. Run INSCHEK <INS file> <Output file> (as in “inschek CaliTotalQQ.ins CaliTotalQQ.dat”) to

confirm instruction file works well with the output file and to generate the .OBF file.

7. The .OBF file generated in the previous step was generated using predicted values, but it needs

to use observed values instead.

a. To begin this step, rename the OBF file to reflect it using observed values (e.g. rename

to “CaliQobs” or add a “_obs” suffix), to ensure modifications to the OBF are not

overwritten by running inschek. Hydro differentiates between CalibrationTimeStep-

based files for observations vs predictions, in CaliQobs.dat vs CaliTotalQQ respectively.

For this reason, although CaliTotalQQ.INS generated the OBF file, we recommend the

OBF file be renamed CaliQobs.OBF and filled using data from CaliQobs.dat.

b. Next, paste in observations for each row, including a space delimitation between the

observation value and the observation ID. For a short amount of observations, the

application Notepad++ has an option to use ALT+Click to select columns of data for copy

and pasting. For longer amounts of observations, the .OBF file can be imported into a

spreadsheet with its data separated into columns, the observation records can be

updated using a spreadsheet timeseries of discharge records at the appropriate

timestep, and the resulting .OBF data can be copy and pasted from the spreadsheet into

a text file.

c. Note that the .OBF file is space-delimited and can work with only a single space between

observation name and observation data.

8. Create PST file: Run PESTGEN <name PST file to be generated> <name of existing PAR file>

<name of existing OBF file> (as in “pestgen HydroPlusConfig.pst HydroPlusConfig.par

CaliQobs.obf”) to generate the PST file with the proper parameters and observations.

9. This PST file may need some modification:

a. Parameter ranges for autocalibration should be updated, and PEST settings for ‘singular

value decomposition (SVD)’ should be added. You can do so by copying the italic text

below into your PST file, replacing the original content between the “* parameter

groups” and “* observation groups” lines. The following adds SVD features, and assigns

the upper and lower bounds of parameters, following the Hydro v6 GUI autocalibration

settings. This example also changes parameter data settings from “none relative” to “log

factor” as used by the Hydro v6 GUI.

* singular value decomposition
1
4 5e-7
0

https://www.itreetools.org/documents/646/Output.ins
https://www.itreetools.org/documents/671/CaliTotalQQ.ins

20

* parameter groups
t0 relative 0.01 0.0 switch 2.0 parabolic
m relative 0.01 0.0 switch 2.0 parabolic
msd relative 0.01 0.0 switch 2.0 parabolic
pmacro relative 0.01 0.0 switch 2.0 parabolic
* parameter data
m log factor 0.023 0.01 1.2 m 1.000 0.000 1
T0 log factor 0.13 0.0005 150 t0 1.000 0.000 1
MSD log factor 0.05 0.001 1.0 msd 1.000 0.000 1
PMacro log factor 0.1 0.0000001 0.2 PMacro 1.000 0.000 1
* observation groups

b. Information below “*model command line” should be updated. The following is an

example that applies if PEST is executed from the same directory containing

HydroPlus.exe and the input config, .TPL, and .INS files, and when that config file and

.TPL file is set to write output to a .\output\ folder in the same directory.

* model command line

HydroPlus.exe .\

* model input/output

HydroPlusConfig.tpl HydroPlusConfig.xml

.\CaliTotalQQ.ins .\output\CaliQobs.dat

* prior information

10. Before running PEST, the PEST Manual suggests checking inputs with PESTCHEK <PST file name

without extension> (as in “pestchek HydroPlusConfig”). Notices about SVD mode can be safely

ignored, though further modifying PEST settings may produce better autocalibrations.

11. Run PEST <PST file name without extension> (as in “pest HydroPlusConfig”)

a. Note that the .PST file can define # of iterations it will work through.

The following is a legend of variables in the “* parameter data” group of the .PST file. This is from
the hydrology.pst-Example.txt written by Hydro v6 GUI autocalibrations.

* parameter data
parameter name - PARTRANS - PARCHGLIM - PARVALI - PARLBND - PARUBND - PARGP - SCALE -
OFFSET - DERCOM
 -
PARTRANS - is a character variable which must assume one of four values, viz. “none”, “log”,
“fixed” or “tied”.
PARCHGLIM - is the param relative limited or factor limited?
PARVALI - parameter’s initial value
PARLBND - parameter lower bound
PARUBDN - parameter upper bound
PARGP - name of parameter groups
SCALE - adjusts parameter before writing to input file
OFFSET - adjusts parameter before writing to input file
DERCOM - set to 1 unless using external derivatives functionality

21

b. PEST generates various files for output. The .REC and .SEN outputs can be especially

useful for information about parameter sensitivity and calibration.

12. After PEST autocalibration is complete, modify your config file to have a CalibrationTimeStep

other than NoCalibration if you have not already, then rerun HydroPlus.exe to get an Output.dat

that shows goodness-of-fit (CRF) values comparing simulation outputs using autocalibrated

parameters versus observed flow.

Autocalibration, retry with new observations

If autocalibration is not achieving desired goodness-of-fit for a project, consider trying a new weather

year and observation set before trying an entirely new area of interest. For such ‘retries’, here are short

steps from the above procedure:

- Copy the existing .TPL and .XML file, update as needed for new try (i.e. new simulation period).

- Repeat step 3b from above: grab the existing .PAR file and fill it in with the desired initial values

(the file will have been changed by previous autocalibration attempts).

- (Optional) Repeat step 4 to confirm the TPL, PAR, and config XML files work well together.

- Copy Output.ins from the previous autocalibration, unless your simulation period has changed

(as in a leap year vs. non-leap year), in which case you must repeat step 5 from above.

- Repeat steps 6-7 using your latest observations to get a .OBF file reflecting your new

observation set.

- Repeat steps 8-9 to get a .PST file reflecting your new observation set and ready for use.

- Perform steps 10-12 to autocalibrate with your new observation set.

After you’ve run the simulations you are interested in, find outputs in the OutputDirectory (defined in

HydroPlusConfig.xml) for the simulation of interest.

The following is a list highlighting and explaining some Hydro outputs and extended outputs (enabled in

HydroPlusConfig.xml) of interest:

output.dat – A summary of key outputs, many of which are reported within i-Tree Hydro GUI for earlier

versions of the HydroPlus model. These values are presented as vertical water fluxes, depths in total

millimeters or meters per timestep. More information about vertical, one-dimensional results and final,

three-dimensional results available in the Vertical and Final Water Budgets section, including how values

in Output.dat should be converted for volumetric results.

VegCanopyFile.csv – Features of the water balance for vegetation processes.

WaterOnPerArea.csv – Features of the water balance for pervious area processes.

Outputs

 Hydrology model outputs

22

WaterOnImpArea.csv – Features of the water balance for impervious area processes.

Evap_ET_Infil.csv – Outputs related to evaporation from vegetation surfaces, infiltration, and

evapotranspiration from the root zone.

Green Infrastructure outputs

Each GI structure simulated generates a WaterBalance_<StructureType>.csv file, which including many

of the same output variables used by the EPA SWMM model’s LID modules. This file is like the Vertical

Water Budget Extended Outputs described below. Units are in meters representing depths. Variables in

GI WaterBalance output files are described in Abdi 2019; output file headers are associated with labeling

diagramed in Figure 30 & Figure 31. Other outputs generated in a GI run represent project’s non-GI 'bulk

area', as depicted in Abdi 2019 Figure 32.

Vertical (Depth) and Final (Volumetric) Water Budgets

Each of the extended output .csv files comes in two versions marked with either a _VW or _FW suffix.

The ‘VW’ versions represent the one-dimensional Vertical Water Balance or Flux results, with outputs

computed as depths to be statistically-distributed throughout the project area. The ‘FW’ versions

represent the statistically-distributed ‘Final Water’ Balance or Flux results, with VWB depths being

multiplied by applicable land cover percentages and the applicable project area to produce volumetric

results. For example, Total tree intercepted rain (m3) = Total tree intercepted rain (m) * (project area

(m2) * % tree canopy).

Output.dat and other results are presented in vertical water fluxes as well. In Output.dat, streamflow

components TotalQ, BaseQ, PerviousQ, and DCIAQ are proportional to the project area as a whole, and

accordingly they can be multiplied by the project area to convert to volumetric results. Other totals in

the Output.dat file such as precipitation and interception values are relative to their applicable land

cover type, as in the example with Total tree intercepted rain in the above paragraph.

Hydro Extended Output Header Definitions

Acronyms and phrases used in column titles of Hydro extended output files are defined below:

General Definitions

W - water
WB - water balance
WF - water flux
SWE - snow water equivalent
SWEB - snow water equivalent balance
Comb - combined water balance from water and snow water equivalent
OIA - open impervious area
TCIA - tree cover over impervious area
TCPA - tree cover over pervious area
TC - total tree cover (over both pervious + impervious)
IA - total impervious cover (open impervious area + impervious area under tree cover)
SV - short vegetation cover
BS - bare soil cover
nonRouted - runoff has not been distributed in time using the 2 parameter surface routing equation

https://www.itreetools.org/documents/532/Abdi-Reza_PhD-Dissertation_ESF_2019.pdf

23

VegCanopyFile Column Definitions

Rain - total rain falling onto the project area
SWE - total snow water equivalent falling onto the project area
Rain_TC - rain falling on the tree canopy
SWE_TC - snow water equivalent falling on the tree canopy
Intercept_TC_W - rain intercepted by the tree canopy
Intercept_TC_SWE - snow water equivalent intercepted by the tree canopy
Evap_TC_W - evaporation of water from tree canopy leaf storage
Evap_TC_SWE - evaporation of snow water equivalent from tree canopy leaf storage
LeafStore_TC_W - water stored in tree canopy leaf storage
LeafStore_TC_SWE - snow water equivalent stored in tree canopy leaf storage
ThroughFall_TC_W - water throughfall through the tree canopy
ThroughFall_TC_SWE - snow water equivalent throughfall through the tree canopy
TreeCanopy_WB - tree canopy water balance (SWE and W combined)
Rain_SV - rain falling on the short veg canopy
SWE_SV - snow water equivalent falling on the short veg canopy
Intercept_SV_W - rain intercepted by the short veg canopy
Intercept_SW_SWE - snow water equivalent intercepted by the short veg canopy
Evap_SV_W - evaporation of water from short veg canopy leaf storage
Evap_SV_SWE - evaporation of snow water equivalent from short veg canopy leaf storage
LeafStore_SV_W - water stored in short veg canopy leaf storage
LeafStore_SV_SWE - snow water equivalent stored in short veg canopy leaf storage
ThroughFall_SV_W - water throughfall through the short veg canopy
ThroughFall_SV_SWE - snow water equivalent throughfall through the short veg canopy
ShortVegCanopy_WB - short veg canopy water balance (SWE and W combined)

WaterOnPerArea Column Definitions

Rain - total rain falling onto the project area
Rain_BS - rain falling onto the bare soil area
ThroughFlow_TCPA_W - throughflow of water onto the pervious area under tree cover
ThroughFlow_SV_W - throughflow of water onto the pervious area under short veg cover
SnowMelt_TCPA - snow melt on the pervious area under tree cover
SnowMelt_SV - snow melt on the pervious area under short veg cover
SnowMelt_BS - snow melt on the pervious area bare soil
Water_PA - total water on the total pervious area
PerArea_WB - water balance for the water on pervious area routines
SWE - total snow water equivalent falling onto the project area
SWE_BareSoil - total snow water equivalent falling onto the bare soil area
ThroughFlow_TCPA_SWE - throughflow of snow water equivalent onto the pervious area under tree cover
ThroughFlow_SV_SWE - throughflow of snow water equivalent onto the pervious area undershort veg cover
SWE_on_TCPA - snow water equivalent on the pervious area under tree cover
SWE_on_SV - snow water equivalent on the pervious area under short veg cover
SWE_on_BS - snow water equivalent on the bare soil area
SnowSub_TCPA - sublimation of snow water equivalent on the pervious area under tree cover
SnowSub_SV - sublimation of snow water equivalent on the pervious area under short veg cover
SnowSub_BS - sublimation of snow water equivalent on the bare soil area
PerArea_SWEB - snow water equivalent balance for the SWE on pervious area routines
PerArea_comb_WB - combined (summed) water balance for W and SWE on the pervious area routines
Water_PA - total water on the total pervious area
Run_on_from_IA - overflow from the depression storage of the total impervious area to pervious areas
Inflow_to_PerDep - total flow into pervious depression storage (summed run-on from IA + total water on PA)
PerDepStor_PA - depression storage of the total pervious area
PerDepEvap_PA - evaporation from depression storage of the total pervious area
PerFlow_To_Infil - overflow from the depression storage of the total pervious area to the infiltration routine
PA_Flow_To_Infil_WB - water balance for the pervious area flow to infiltration routines

24

WaterOnImpArea Column Definitions

Rain_OIA - rain on the open impervious area
ThroughFlow_TCIA_W - throughflow of water onto the impervious area under tree cover
SnowMelt_OIA - snow melt on the open impervious area
SnowMelt_TCIA - snow melt on the impervious area under tree cover
Water_IA - total water on the total impervious area
ImpArea_WB - water balance for the water on impervious area routines
SWE_OIA - snow water equivalent on the open impervious area
ThroughFlow_TCIA_SWE - throughflow of snow water equivalent onto the impervious area under tree cover
SWE_on_OIA - snow water equivalent on the open impervious area
SWE_on_TCIA - snow water equivalent on the impervious area under tree cover
SnowSub_OIA - sublimation of snow water equivalent on the open impervious area
SnowSub_TCIA - sublimation of snow water equivalent on the impervious area under tree cover
ImpArea_SWEB - snow water equivalent balance for the SWE on impervious area routines
ImpArea_comb_WB - combined (summed) water balance for W and SWE on the impervious area routines
ImpDepStor_IA - depression storage of the total impervious area
ImpDepEvap_IA - evaporation from the depression storage of the total impervious area
ImperFlow_Soil - overflow from the depression storage of the total impervious area to pervious areas
ImperFlow_Outlet_nonRouted - overflow from the depression storage of the total impervious area to the runoff
routing routine
ImpArea_Runoff_WB - water balance for the impervious area runoff generation routines

Evap_ET Column Definitions

Evap_TC_W - evaporation of water from tree canopy leaf storage
Evap_TC_SWE - evaporation of snow water equivalent from tree canopy leaf storage
Evap_SV_W - evaporation of water from short veg canopy leaf storage
Evap_SV_SWE - evaporation of snow water equivalent from short veg canopy leaf storage
Infiltration_PA - water infiltrated by the pervious area
rET_VegCover - real (not potential) evapotranspiration

This section lists potential outputs from the Cool Air model. To configure Cool Air outputs, see the

Settings for Cool Air section and use the information below as a guide on available output options.

Two main types of output are available from the temperature model:

- Cell-based Output: results specific to a location on the gridded spatial inputs, referred to as a

cell. These outputs are a timeseries of results for the specified cell.

- Time-based Output: results specific to a timestep during the simulation period, displayed as an

ASCII raster map of outputs for all cells during the specified timestep.

There are also Blockgroup-based Output available but not yet stable, as the output metrics included in

those files are unique and still in development. Land Cover Scaling-specific output is written by the Land

Cover Scaling C# program.

Cell-based Output

The following gives examples of potential TemperatureExecutionParams options to generate different

varieties of Cell-based Output. For a complete list of potential config file output tags, see Example of all

options for TemperatureExecutionParams.

 Temperature model outputs

25

 Example C:
 Print Row#Col#Heat.txt and Row#Col#Hydro.txt for all locations in the DEM for the
time range specified. June 24, 2015 from the 1st hour/time step to the last hour/timestep
of that day; and June 26-28, 2015.
 <TemperatureExecutionParams>
 <RefWeatherLocation>1,42</RefWeatherLocation>
 <PrintRowCol>All</PrintRowCol>
 <RowColOutputPeriod0>2015062400,2015062423</RowColOutputPeriod0>
 <RowColOutputPeriod1>2015062600,2015062823</RowColOutputPeriod1>
 </TemperatureExecutionParams>

 Example D: Print Row#Col#Heat.txt for specific locations in the DEM for all
timesteps in the simulation (RowColOutputPeriod = All).

 <TemperatureExecutionParams>
 <RefWeatherLocation>1,42</RefWeatherLocation>
 <PrintRowCol0>5,3</PrintRowCol0>
 <PrintRowCol1>2,2</PrintRowCol1>
 <RowColOutputPeriod>All</RowColOutputPeriod>
 </TemperatureExecutionParams>

Description of Cell-based Output in Source Code: TemperatureOutputWriter.h
2. RowCol Output

*Functions related to the creation of Row#Col#Heat.txt # is a placeholder for DEM
location row number and col number
 ts Ta Td Ea ImpNR TreeNR ShortVegNR SoilNR ImpH ImpLE
TreeH TreeLE TreeLEE TreeLET ShortH ShortLE ShortLEE ShortLET
SoilH SoilLE H LE
 2015062409 297.025 288.089 0.012781 68.0026 74.0514 60.2795 0 85.4408
0 -171.964 222.164 189.708 32.4559 -180.26 240.489 187.167 53.3219 0 0 35.794
43.7463
 static void createHeatRowColFile(int i, int j, std::string outDirectory);
 -The above function creates the file and adds the header line
 static void writeToHeatRowColFile(int timeStep, int i, int j, DataFolder *folder,
std::string outDirectory);
 -The above function writes output for a specific DEM location for a specific time
step
*Functions related to the creation of Row#Col#Hydro.txt # is a placeholder for DEM
location row number and col number
These are currently not in use!!!
 -static void createHydroRowColFile(int i, int j, std::string outDirectory, Inputs
*input);
 -static void writeToHydroRowColFile(int i, int j, DataFolder *folder, std::string
outDirectory);
*Helper functions for generating row#col# files
 -static void rowColFileBatchProcessor(int timeStep, int organizerLocationIndex,
DataFolder *folder, std::string outDirectory, Inputs *input);
 The above function determines if the data for a location at a specific time step
is written to its
 corresponding heat file
 -static void generateRowColFiles(DataOrganizer *organizer, Inputs *input);
 The above function creates all rowcol files for the simulation run

Time-based Output
 Example E:

26

 For each timestep within 2015062400,2015062423 range, print a file for a specific
variable such as AirT#.txt (where # is the timestep#). When PrintTimeBasedResults is set
to All, All variable files will be created containing that value for each location in the
DEM. (See [below in Time-Based Output Variables Available section, or] function
TemperatureOutputWriter::timeStepResultsFileProcessor for complete list of variables.)

 <TemperatureExecutionParams>
 <RefWeatherLocation>1,42</RefWeatherLocation>
 <PrintTimeBasedResults>All</PrintTimeBasedResults>
 <TimeBasedOutputPeriod0>2015062400,2015062423</TimeBasedOutputPeriod0>
 <TemperatureExecutionParams>

 Example F:
 When PrintAllTimeBasedResults is set to AirT, only AirT#.txt files will be printed
for the following three time periods.

<TemperatureExecutionParams>
 <RefWeatherLocation>1,42</RefWeatherLocation>
 <PrintTimeBasedResults>AirT</PrintTimeBasedResults>
 <TimeBasedOutputPeriod0>2015062400,2015062423</TimeBasedOutputPeriod0>
 <TimeBasedOutputPeriod1>2015062600,2015062723</TimeBasedOutputPeriod1>
 <TimeBasedOutputPeriod2>2015062800,2015063000</TimeBasedOutputPeriod2>
 <TemperatureExecutionParams>

 Example G:
 In the below example, all variable files AirT#.txt, TD#.txt, ect. files will be
printed for every timestep in the simulation.

 <TemperatureExecutionParams>
 <RefWeatherLocation>1,42</RefWeatherLocation>
 <PrintTimeBasedResults>All</PrintTimeBasedResults>
 <TimeBasedOutputPeriod>All</TimeBasedOutputPeriod>
 <TemperatureExecutionParams>

Time-Based Output Variables Available

All equations referenced in the table below are from Yang et al. (2013).

Variable ID used in Config File Meaning

AirE Air absolute humidity (kg/m^3); Eq 18

AirT Air temperature (K)

Td Dew-point temperature (K)

H Total sensible heat flux (W/m^2); Eq 1; 12

ImperviousH Impervious sensible heat flux (W/m^2); Eq 3, 19

ImperviousLE Impervious latent heat flux (W/m^2); Eq 4; 19

ImpNR Impervious net radiation (W/m^2); Eq 9, 24

LE Total latent heat flux (W/m^2); Eq 2; 13

ShortVegH Short veg sensible heat flux (W/m^2); Eq 5, 22 &

23

ShortVegLE Short veg latent heat flux (W/m^2); Eq 6, 21

ShortVegLEE Short veg latent heat flux from evaporation

(W/m^2); Eq 22

27

ShortVegLET Short veg latent heat flux from transpiration

(W/m^2); Eq 23

ShortVegNR Short veg net radiation (W/m^2); Eq 10, 24

SoilH Soil sensible heat flux (W/m^2); Eq 7, 20

SoilLE Soil latent heat flux (W/m^2); Eq 8, 20

SoilNR Soil net radiation (W/m^2); Eq 11, 24

TreeH Tree sensible heat flux (W/m^2); Eq 5, 22 & 23

TreeLE Tree latent heat flux (W/m^2); Eq 6, 21

TreeLEE Tree latent heat flux from evaporation (W/m^2);

Eq 22

TreeLET Tree latent heat flux from transpiration (W/m^2);

Eq 23

TreeNR Tree net radiation (W/m^2); Eq 10, 24

Description of Time-based Output in Source Code: TemperatureOutputWriter.h

3. Time Based output

*Functions related to the creation of timestep files containing the specified variable
value for each location
in the DEM.
 -static void createTimeStepResultFile(std::string outputVarName, std::string date,
Inputs *input);
 The above function creates the file for a specific result and date
 -static void writeToTimeStepResultFile(std::string outputVarName, std::string
date, std::string & outDirectory, double val, bool newLine);
 The above function adds the value for a specific location's variable value to
appropriate file. The value is written
 to the same DEM row/col location.
 -static void timeStepResultsFileProcessor(int timeStep, int
organizerLocationIndex, DataFolder *folder, std::string outDirectory, Inputs *input);
 The above function coordinates the creation of all result files and addition of
each locations results to created files

28

- The filepath to your working copy of the code should not have any spaces in it. It’s been found

that a space in the filepath will cause the testing scripts to fail.

o OK: C:\Users\coviller\Dev_Files\SVN\hydrologyv6\branches\HydroPlus

o Not OK: C:\Users\coviller\Dev Files\SVN\hydrologyv6\branches\HydroPlus

To maintain working code that can support further development and troubleshooting, we rely on 3 code

management strategies.

- Version Control: keeping track of different iterations, variations, and checkpoints of the code.

- Standard Operating Procedure for Testing Code: a consistent and efficient way to check of a

reliable set of inputs produces the expected set of outputs in various modes and conditions.

- Standard Operating Procedure for Updating Code: a consistent and reliable way to build upon

stable code with minimal introduction of bugs or divergence from the stable code.

The two major systems for version control are SVN and git. i-Tree projects first version controlled in

2018 or later tend to be stored on git at https://code.itreetools.org while older projects are stored on

SVN at https://svn.itreetools.org/usvn.

If you are beginning to work on HydroPlus R&D and need access to SVN, please register a new account

at https://code.itreetools.org and notify project leader James.Kruegler@davey.com.

Version control is generally organized in a hierarchy with ‘repositories’ or ‘projects’ at the top level of

each version control tree.

Locations

HydroPlus – the C++ model code for i-Tree Hydro, i-Tree Cool Air, and related models and modes – is

version controlled using SVN. Its repository is at https://code.itreetools.org/svn/HydroPlus and

https://code.itreetools.org/svn/HydroPlus/trunk.

LocalizeEMCs – two Python models for extracting event mean concentration (EMC) or export coefficient

(EC) values from the White et al. (2015) database, creating output needed by Buffer.py– is version

controlled on git at https://code.itreetools.org/ESF/Hydro/LocalizeEMCs_git

Tips & Troubleshooting

 Local work environment

Version Control and Testing

 Version Control

https://code.itreetools.org/
https://svn.itreetools.org/usvn
https://code.itreetools.org/
mailto:James.Kruegler@davey.com
https://code.itreetools.org/svn/HydroPlus
https://code.itreetools.org/svn/HydroPlus/trunk
https://code.itreetools.org/ESF/Hydro/LocalizeEMCs_git

29

Buffer – the Python model for identifying non-point source runoff pollution loading hotspots – is version

controlled on git at https://code.itreetools.org/ESF/Hydro/Buffer_git.

Energy – the Python model for mechanistically predicting shade tree benefit for building heating &

cooling loads – is version controlled on git at https://code.itreetools.org/ESF/Hydro/Energy_git

SVN Concepts and Definitions

TortoiseSVN is used to interact with the SVN repository for HydroPlus. This TortoiseSVN software should

be installed on the local machine, and integrated into the Windows apps and programs so it is available

from File Explorer.

The TortoiseSVN manual is useful reference:

https://tortoisesvn.net/docs/release/TortoiseSVN_en/index.html

TortoiseSVN Subversion Control Procedures

TortoiseSVN offers SVN commands, and those most frequently used are discussed below.

1. SVNCheckout (right click on new local folder from File Explorer) is used once on a folder to

establish the link between the local folder and the itreetools SVN URL and obtain the files from

the server. The SVNCheckout process will default download the head or latest revision of entire

solution from the URL to the local folder. An older revision can be selected, and revisions can be

explored by using the Show Log features in this command.

2. SVN Update (right click on new local folder from File Explorer) is used each day after establishing

a connected folder with SVNCheckout, in order to get the latest revision, presuming someone

had made and committed changes. It will automatically update to the latest revision, or head.

3. SVN Commit (right click on new local folder from File Explorer) is used after each local revision

has been made and the standard operating procedures of checking test cases. This command

provides a text window to enter comments, which should include details on the what, why, how

of files that were modified, and a confirmation that the test cases pass. This command also

allows for selecting which files should be committed to the SVN URL.

4. TortoiseSVN (right click on new local folder from File Explorer) will open another list of

commands in File Explorer, including Show Log, Repo – browser, Merge, Update to Revision, and

many others. All are potentially useful for some situations.

When using SVN, it is important to understand the difference between local content versus server-side

content. Given the differences between those two storage areas, the following should never be included

in version control:

- Build output from project (can always be rebuilt from source)

- Nuget local packages directory (should always be downloaded)

- *.suo and *.user files for Visual Studio repositories (these are only used by VS to retain current

development layout.. E.g. which files are open and their position.. committing these will lead to

many merge conflicts)

https://code.itreetools.org/ESF/Hydro/Buffer_git
https://code.itreetools.org/ESF/Hydro/Energy_git
https://tortoisesvn.net/docs/release/TortoiseSVN_en/index.html

30

Git Subversion Control Procedures

TortoiseSVN offers git commands and those most frequently used are discussed below. Commonly used

Xterm window or DOS git commands are also presented below.

TortoiseSVN

1. Git Clone (right click on new local folder from File Explorer) is used once on a folder to establish

the link between the local folder and the itreetools Git URL and obtain the files from the server.

The Git Clone process will default download the head or latest revision of entire solution from

the URL to the local folder. Open the .git config file to confirm the clone was successful, and

there is the proper URL and a "merge" field, with the path to the branch or master.

2. TortoiseGit > Pull (right click on new local folder from File Explorer) is used each day after

establishing a connected folder with Git Clone, in order to get the latest revision, presuming

someone had made and committed changes. It will automatically update to the latest revision,

or head.

3. Git Commit-> <target> (right click on new local folder from File Explorer) will open window to

enter comments, add files with changes, and click on Commit & Push button

4. TortoiseGit (right click on new local folder from File Explorer) will open new window within File

Explorer with many commands, including Diff, Revert, and Show Log to explore local and URL

issues

Xterm DOS

1. git clone <URL> or git clone -b <branch> <URL> is used once on a folder to establish the link

between the local folder and the itreetools Git URL and obtain the files from the server. The git

clone process will default download the head or latest revision of entire solution from the URL

to the local folder. Open the .git config file to confirm the clone was successful, and there is the

proper URL and a "merge" field, with the path to the branch or master.

2. git pull, git diff, and git status within the git folder explore local and URL issues

3. To commit, three steps are required:

a. git add <filename> or git add –a to place one file or all files into staging area

b. git commit -m "comments on changes" with –m indicating a message in “” follows

c. git push will move staged files to URL.

Utilities and models related to HydroPlus are developed and stored on git repositories. Below is an

example workflow for development of code on one of our git repositories. Other git notes follow.

1. Checkout a local copy of GLRI_AutoRR

2. Modify, delete, add content on local copy

4. Use "git status" to confirm changes are as expected

5. Use "git add ." to stage all changes for commit

6. Use "git commit -m <message in quotes>" to commit changes with brief description of revision's

changes. E.g. git commit -m "Changing DEM delineation module to use function from external"

7. Use "git push" to send your local revisions/commits to the server. For this command to work you may

31

need to setup your git working space. If so, use "git remote get-url" to confirm your remote (server-side)

URL and "git remote set-url <full URL>" to (re)set it if needed. Other common issues include other git

remote settings or credential commands needed.

Caution: Be careful with big files on version control. Once something is committed to the version control

server, it's stored even if deleted in a future revision, as intended by version control tracking old

versions. It is difficult or unfeasible to free up storage space from old revisions. As an alternative to

committing large files, consider using a placeholder documentation file instead, so users could checkout

the program and use the documentation to reproduce/source any large files needed. i-Tree Buffer has

an example of this: https://code.itreetools.org/ESF/Hydro/Buffer_git in the Constants folder, which in a

fully-functioning working copy is ~180GB but on version control is kept smaller with a descriptive xlsx file

to provide guidance about large files that would be included off version control.

A comprehensive list of files to be ignored for git-based version control is available here, which can serve

as a reference for SVN use: https://github.com/github/gitignore/blob/master/VisualStudio.gitignore

 A test script with sample inputs and expected outputs are setup to streamline model testing. The

standard test procedure will compile a working copy of the HydroPlus code and run it against the tests

defined in \HydroPlus\TestingFilesAndScript\ListOfTests.txt.

Procedure for Running Test Script

1. If you have not yet set up Visual Studio 2022 and compiled a new copy of the HydroPlus EXE,

follow the instructions in the Development Notes section “Visual Studio setup for developing &

testing code” to prepare for running the test script.

2. Go to the /TestingFilesAndScript/ directory (e.g.

https://svn.itreetools.org/svn/hydrologyv6/trunk/TestingFilesAndScript/) and open

ListOfTests.txt.

3. Within ListOfTests.txt, confirm that the first line of the file defining the Executable location

points to the correct location for the compiled HydroPlus.exe to be tested:

“Executable,..\HydroPlus\Release\HydroPlus.exe” This should be the case by default so that

Steps 1 & 2 require no action. Close ListOfTests.txt.

4. Run the Python 3 script “TestToCompareHPOutputToStandards.py” from a command prompt or

your preferred Python IDE.

a. Nothing in this file or standard inputs should need to be changed; the script will use the

HydroPlus.exe in /HydroPlus/Release/ along with the various input and expected output

sets to test that EXE against standard results, ensuring all HydroPlusConfig.xml files are

set to appropriate input/output paths.

 SOP for Testing Code

https://code.itreetools.org/ESF/Hydro/Buffer_git
https://github.com/github/gitignore/blob/master/VisualStudio.gitignore
https://svn.itreetools.org/svn/hydrologyv6/trunk/TestingFilesAndScript/

32

b. This script will not pause between simulations for users to view terminal output, but a

log.txt file will be generated in the same directory as the script for users to review

terminal output after all simulations are complete.

5. The script will create a new directory named “Testing_YYYY_MM_DD_hh_mm_ss”. In that

directory, the “results.txt” file will identify which files in which test cases failed if any. If any tests

failed, compare the specified output file to the expected output file to begin troubleshooting.

Notepad++ offers a comparison tool for side-by-side difference identification in each output.

6. If outputs are only slightly different that may be acceptable, or if certain expected outputs are

not yet reliable it may be OK if the code being tested doesn’t match. On the other hand,

seemingly minor differences in formatting could cause problems in production, so carefully

consider any differences.

7. Once all differences are resolved and the working copy of the code is performing as expected,

you can commit it to SVN, and in the SVN commit message summarize the changes that have

been made in this revision. Try to use key words that may be searched for later on, making it

easier for future development to browse revision history for specific changes.

During development, the following procedure should be followed to maintain stable code and minimize

divergence from the stable code. Note that this procedure was developed for GI development going on

simultaneously with HydroPlus development; a more relaxed procedure might work during less

challenging development conditions.

Each day during development:

1. Begin by updating your working copy to the latest revision of the main code, to ensure your

work is in sync with that.

2. Develop features as needed. Try to avoid writing redundant code (e.g. if the function you need

exists for a different model mode, find a way to use it or use functors to use a variation of it) and

try to keep things modular and parsimonious. Importantly: test and troubleshoot as you go; do

not try to build upon broken code. More guidance in the Architecture section.

3. Run the standard test scripts to ensure that the day’s work has not broken the stable code.

4. If the scripted tests show that the working copy of the code fails to produce expected outputs in

stable model modes, then you need to restore the code to working order before committing it

each day. (Restoring the code to working order could be as simple as commenting out the newer

work for the day, or just commenting out the troublesome parts of it.)

5. Once the code is in working order, commit your work for the day, every day that you work on it.

That way a record and backups of work in progress is maintained, keeping new development in

sync with the main code and ensuring new code isn’t being built on broken code.

When making comments (at least for temporarily-commented out code), sign with author and latest

date. Indicating latest date will help us estimate if ‘old’ commented out code can be deleted from future

revisions, or if it is freshly commented out code we’ll know to leave it in case it is work-in-progress.

 SOP for Developing New Features

33

The HydroPlus development team uses Visual Studio 2022 to view, edit, and compile the C++ source

code. The VS software plays a critical role in how HydroPlus is developed and tested. The “Community

Edition” of VS 2022 is free to download and use.

1. Install Visual Studio 2022 Community Edition if you have not already. In the installation you will

need certain development components to compile HydroPlus. To change what components

have been installed, open the Visual Studio Installer, go to the ‘Installed’ tab, then select the

‘Modify’ button on VS 2022.

a. Select the “Desktop development with C++” workload, leaving all default sub-

components selected.

b. Select the “Universal Windows Platform development” workload, leaving all default sub-

components selected.

2. Open the HydroPlus solution (e.g.

https://svn.itreetools.org/svn/hydrologyv6/trunk/HydroPlus/HydroPlus.sln) in Visual Studio.

a. Ensure that the HydroPlus project is set to compile with the needed configuration

properties. To do so, right click on the Hydro project in Visual Studio’s Solution Explorer,

and select Properties. In the window that appears, click the ‘General’ option under

‘Configuration Properties’. Implement the settings shown below:

i. Windows SDK Version = 10.0.19041.0 (or later)

ii. Platform Toolset = Visual Studio 2022 (v143)

Development Notes

 Visual Studio setup for developing & testing code

https://svn.itreetools.org/svn/hydrologyv6/trunk/HydroPlus/HydroPlus.sln

34

3. At the top of the same window, set the Configuration to “Release” mode and Platform to

“Win32” (usually it will be in Debug, Win32 mode during development). Close the Properties

window, and make sure the same configuration options are selected in the top toolbar.

4. Go to Build > Rebuild Solution to compile a fresh copy of HydroPlus.exe. The Output window in

Visual Studio should show compilation processes and will end by stating if the solution compiled

successfully or failed.

a. If the Build fails due to errors related to missing math.h or other basic libraries, consider

following advice in StackExchange, using the Visual Studio Installer > Individual

components > and under the heading “Compilers, build tools, and runtimes” check the

box for “Windows Universal CRT SDK”.

5. Find the /Release/ folder in the same directory as the HydroPlus.sln file, and in that /Release/

folder confirm there is a HydroPlus.exe created as recently as expected.

The config files included in /TestingFilesAndScript/TestCases/ serve as ‘master copy’ config files; as we

update HydroPlus, users can compare older config files with the latest in TestCases to get their files up-

to-speed with the latest config file features.

Because we have numerous TestCases, config file changes need to be made in batch. Superficial changes

are those that only affect the config file (e.g. changing comments), as compared with other changes (e.g.

changing tag names) that require accompanying code changes.

Batch superficial changes (file only, no code changes)

1. Open all HydroPlusConfig.xml files contained in /TestingFilesAndScript/TestCases/

Use Windows Explorer’s search feature, select all, and open all in Notepad++. To be safe, you may

want to close all Notepad++ documents prior to opening all config files, to ensure your batch

changes only apply to config files.

 Config file modifications

35

2. Use Find + Replace feature: Find to identify a string to be modified or to anchor a modification;

and Replace to change that string or add content before or after it. In the example below, an

outdated comment about available Model tag values is being changed to remove GI (since the

GI model mode is now built into StatisticalHydro model mode).

36

Be careful to use a “Find” value detailed enough to ensure you only edit around the string you intend to.

For example, if you searched for a string that occurs in multiple different tags, your Replace action might

affect unintended tags. To be extra careful, you can use Find Next to identify all strings to be affected

before choosing to Replace All in All Opened Documents. To check your work, you can use

TortoiseSVN>Revert… or Commit… to view a list of files you’ve modified in your working copy of the SVN

code repository, and you can right-click each file to view each specific difference highlighted. That way

you’ll see if the differences are what you intended or not before moving forward with development or

committing your work.

3. Save changes to all files

37

4. Follow SOP for Testing Code to confirm your changes have not unintentionally affected results.

Code changes associated with config file changes

Basic workflow:
1. Find and replace all instances of relevant input-parsing code for config file tag being

modified. Example: find and replace all folder->ParamDict["Area"] with folder-
>ParamDict["BAorGIArea_m2"] in HydroPlus.sln

2. Open all config files as tabs within a single Notepad++ window. Find and replace all, in
all open documents. Example: Area> with BAorGIArea_m2>. That > symbol captures the
necessary part of <Area> as well as </Area>.

3. Save all modified config files. Run test SOP. Parameter name changes should not require
expectedoutputs change. If expectedoutputs do need to change, carefully check the
new output and then commit that as the expectedoutputs if suitable.

The parameter which controls all the timesteps related operations is the
“SimulationNumericalParams["TotalTimeSteps"]”. In the UH, we have the following line:

Inputs.cpp
#63, 64, & 65

 d1 = ToJulianDate(SimulationNumericalParams["StartDay"]);
 d2 = ToJulianDate(SimulationNumericalParams["EndDay"])+1;
 SimulationNumericalParams["TotalTimeSteps"] = (d2 - d1) * 24;

Therefore, by modifying the TotalTimeSteps we can run the model in different timesteps. For
example, to run a 5-min interval scenario for 2 hours, manually changing the TotalTimeSteps to
24 ((60/5)*2) in the code works. If we add the TotalTimeSteps parameter to the config file, the
users could run the code in finer resolution than hourly based intervals.

 yyyymmdd hh:mm:ss Precipitation Total run off Base flow(m) Pervious flow
Impervious flow

 20120508 12:00:00 0 1.6e-05 2.93245e-32 0 0
 20120508 12:05:00 0 3.2094e-17 3.2094e-17 0 0
 20120508 12:10:00 0 1.47769e-13 1.47769e-13 0 0
 20120508 12:15:00 0 7.30526e-12 7.30526e-12 0 0
 20120508 12:20:00 0 7.17038e-11 7.17038e-11 0 0
 20120508 12:25:00 0 3.24432e-10 3.24432e-10 0 0
 20120508 12:30:00 0 9.51454e-10 9.51454e-10 0 0
 20120508 12:35:00 0 2.13408e-09 2.13408e-09 0 0
 20120508 12:40:00 0 4.00736e-09 4.00736e-09 0 0
 20120508 12:45:00 0 6.64721e-09 6.64721e-09 0 0

 Running HydroPlus in sub-hourly timesteps (Jan 21, 2019)

38

 20120508 12:50:00 0 1.0076e-08 1.0076e-08 0 0
 20120508 12:55:00 0 1.42753e-08 1.42753e-08 0 0
 20120508 13:00:00 0 1.91993e-08 1.91993e-08 0 0
 20120508 13:05:00 0 2.47856e-08 2.47856e-08 0 0
 20120508 13:10:00 0 3.09641e-08 3.09641e-08 0 0
 20120508 13:15:00 0 3.76624e-08 3.76624e-08 0 0
 20120508 13:20:00 0 4.48097e-08 4.48097e-08 0 0
 20120508 13:25:00 0 5.23391e-08 5.23391e-08 0 0
 20120508 13:30:00 0 6.01887e-08 6.01887e-08 0 0
 20120508 13:35:00 0 6.83024e-08 6.83024e-08 0 0
 20120508 13:40:00 0 7.66298e-08 7.66298e-08 0 0
 20120508 13:45:00 0 8.51262e-08 8.51262e-08 0 0
 20120508 13:50:00 0 9.3752e-08 9.3752e-08 0 0
 20120508 13:55:00 0 1.02472e-07 1.02472e-07 0 0

Hydro LCscaling analysis

HydroPlus was modified in early 2019 to interface with the “LCscaling” utility, which batch runs UH

through increments of tree cover and impervious cover to assess a gradient of land cover change

effects. This ‘land cover scaling’ analysis has been used since before 2015 with the semi-distributed

Hydro model, using a tool called ‘AutoRun’. The ‘new and improved’ LCscaling utility is designed to work

with the semi-distributed Hydro model as well as the fully-distributed Cool Air model.

To use that LCscaling tool:

1. Check it out from https://code.itreetools.org/svn/HydroGUIv6/branches/LCscaling

2. Place a HydroPlus.exe (freshly compiled in Release mode from

https://code.itreetools.org/svn/HydroPlus/trunk) in …\LCscaling\AutoRun\HydroBin\

3. Compile AutoRun.sln and use interface to interact with LCscaling analysis. This runs

HydroPlus.exe from Step 2 in config file setting <Model>LCScalingTempSpatial</Model>.

History

This utility was developed by Thomas Taggart (SUNY-ESF) and Pallavi Iyengar (Syracuse University)

beginning June 2014 (or potentially earlier with Yang Yang (SUNY-ESF)), to produce results for EPA

EnviroAtlas datasets, collaborating with David Nowak (USFS) and Theodore Endreny (SUNY-ESF) on

utility design and I/O goals. Shannon Conley (Davey Institute) worked with Robert Coville (Davey

Institute) and Theodore Endreny (SUNY-ESF) to update AutoRun for use with HydroPlus.exe, which

began April 2019 with the initiation of the LCscaling branch of the Hydro SVN repository (referenced

above). Nakul Sahayata (Syracuse University) began to assist with LCscaling development in March 2020.

 Land cover scaling simulations (LCscaling utility)

https://code.itreetools.org/svn/HydroGUIv6/branches/LCscaling
https://code.itreetools.org/svn/HydroPlus/trunk

39

This utility continues to be developed for use in GLRI Forest Planning & NUCFAC Temperature-Health

R&D projects.

Cool Air LCscaling analysis

Note that for Cool Air, an alternative to the LCscaling utility was developed. That uses LCscaling input

grids in a single program execution instead, and uses blockgroup hourly outputs and a new

<LCScalingOutput>Yes</LCScalingOutput> option in Cool Air config file’s

<TemperatureExecutionParams> section, to execute a batch interpolation feature for results from all 1%

increments of TC & IC from 0-100%.

For example, Cool Air will run LCscaling interpolation using 2x2 input grids of edge case conditions and

the following config file settings:

 <TemperatureExecutionParams>
 <RefWeatherLocation>1,1</RefWeatherLocation>
 <PrintBlockGroupDailyAndHourly>True</PrintBlockGroupDailyAndHourly>
 <PrintBlockGroupRange0>1,4</PrintBlockGroupRange0>
 <LCScalingOutput>Yes</LCScalingOutput>
 </TemperatureExecutionParams>

In the Statistical Hydro model, all land cover parameters are explicitly defined and are expected to sum

to 100%.

In the Spatial Temperature model, land cover for each dataFolder (a.k.a. cell, pixel in the area of interest

raster grid) is defined by a raster layer for tree cover % (treecover.dat), impervious cover %

(imperviousCover.dat), and NLCD Land Cover Class (landcover.dat). NLCD Land Cover (LC) classes are

associated with different parameters for model subroutines, and these LC classes inform what other

land cover is present when TC+IC<100%.

The conditions for TC+IC>100% or TC+IC<100% are defined (as of revision 473) in HydroPlus’s

LandCoverPCal.cpp file, in the LandCoverPCal::CalLandCover function. Comments in this section describe

methods. In short, the excess when TC+IC>100% is assumed to be TreeOnImp (tree canopy covering

impervious cover). The deficiency when TC+IC<100% is defined according to LC class, where special LC

classes dictate what is filled in (e.g. in a ‘open water’ cell, water is filled in) or a standard method is used

(as for LC21, filling the gap with ShortVeg and/or Soil).

Functors are used instead of complicated switches to plug in certain functions depending on a given

condition. For example, whether the semi-distributed hydrology model is run or the spatially-distributed

temperature model is run, most of the same functions will be called but certain processes will require

Conditions for TC+IC != 100%

 Functors

40

different functions depending on the specific model. Functors can control which functions are run

depending on which model is being run.

In RootZoneETCalc::calculate a functor is called:

To find what this functor is doing, I searched “functor” in the entire solution and looked for where many

appear to be defined. That’s in TestSimulation.cpp within the definition of runBulkAreaCalculations

What we see here is that, within the runBulkAreaCalculations function, there is basically as switch board

saying what a functor should do depending on a certain input or condition. In the calculateRootzoneET

functor highlighted above, depending on what model is being run, a different actual function (either

calculateRootzoneETStatistical or calculateRootzoneETTemperature) is assigned to that functor. That

way, back in RootZonETCalc::calculate, the functor calculateRootzoneET can be called and it will

automatically activate the appropriate function depending on which model is running.

 Build settings

41

In August 2020 it was observed that the Visual Studio setting for Whole Program Optimization was

resulting in build failures for some developers. Whole Program Optimization is disabled moving forward

for two reasons: 1) disabling that feature resolves the build errors some developers faced, and 2) this

feature is not recommended for development cases like ours, where libraries may be shared across

different versions of Visual Studio, resulting in unexpected behavior when this feature is enabled. More

information about this feature is available at https://devblogs.microsoft.com/cppblog/quick-tips-on-

using-whole-program-optimization/.

The content below was shared by Shannon Conley in Oct ’18 as feedback for Reza Abdi as rev279 had

many compilation errors. Shannon resolved many of those errors and provided this feedback in rev280.

Reza was simultaneously working on resolving many of those errors with feedback Robbie Coville

provided, and Reza committed his changes to rev281. Content below provided as reference, eventually

to be cleaned up & integrated into the rest of this manual.

Calculation Classes

These classes should contain only static function members. Highlighted in yellow is a static function

declaration. Marked in red is not-static. A static function cannot call a non-static function. This results in

a compilation error. Also, static functions cannot access data members. such as inflowFromGI_mm. This

is by design. All data should be read from or stored in either the *input or *folder. If data is specific to a

GI unit or bulk area it should be stored in one of the *folder dictionaries (will explain more below). If

data is read from an input file or related to more than one unit then it would be stored in *input.

A static member function is used without creating an instance of the class exist and the static functions

are accessed using only the class name and the scope resolution operator ::. Below are some examples.

 Feedback on C++ methods for GI dev (Oct 18, 2018)

https://protect-us.mimecast.com/s/zhO-CJ67Qyug7mAYUGe7Ey?domain=devblogs.microsoft.com
https://protect-us.mimecast.com/s/zhO-CJ67Qyug7mAYUGe7Ey?domain=devblogs.microsoft.com

42

This is a nice link explaining static concepts in C++.

https://www.tutorialspoint.com/cplusplus/cpp_static_members.htm

The DataFolder class

Originally, this class was called Cell, but it seems to be a loaded term. A DataFolder can be created for

each GIUnit. For instance, BulkArea will have its own instance of a DataFolder class. Only info specific to

this unit should be stored here. There are four options for storing data.

1. std::map<std::string, double> ParamDict; This stores input data specific to the unit
with the double datatype. So in a calculation, you can access PerDepStorage as

highlighted below.

https://www.tutorialspoint.com/cplusplus/cpp_static_members.htm

43

2.
std::map<std::string, std::string> ParamStringDict; This is the same as above, but stores
data in string format.

3. This is used to store data created/used by calculations. As opposed to creating class
data member. All data specific to a unit such as BulkArea should be stored here. You can
create a new entry/start using it without explicitly declaring/defining it. By default,
all values will be zero.

 std::map<std::string, double> VarDict;

4. std::map<std::string, std::vector<double> > VarVecDict; These store vectors unique to

a unit. Use sparingly/can grow quite large/cause memory issues. Most should be

deleted/legacy for writing extended output.

If calculation data needs to be shared/passed between units, store it in input->RepoDict
or input->RepoVecDict (Use RepoVectDict sparingly same issues as VarVecDict.)

44

Development method and troubleshooting

If a large amount of code has been added and is not compiling, strongly consider starting over from the

most recent stable checkpoint on the HydroPlus webpage. First create functions that print the desired

inputs to the console. Program a single-line calculation/compile/run/repeat. Afterwards, remove or

comment out the print statements. Always make sure the code is working. Do not program with errors.

If code cannot compile, you cannot debug. Even if the code compiles, this does not mean it is behaving

as expected.

Questions from Reza Abdi & Robbie Coville, answers from Shannon Conley

1. Where in the code do we begin running GI calcs? A potentially simple answer: in
TestSimulation::RunStatisticalModel, after calling runBulkAreaCalculations, we call runGICalculations.
The rationale for having a separate set of calculations to run for bulk area vs. GI is that, though most of

 Architecture development Q&A for GI (Oct 26, 2018)

https://www.itreetools.org/tools/research-suite/hydro-plus

45

the calcs will be the same, GI may want to call a few extra processes; maybe this can be handled all
within runBulkAreaCalculations using a functor based on the condition of what type of structure the
code is currently running (Bulk Area vs. a GI type). That raises the next question (#2).

We use functors when the calculation has sections of code that differ. If the calculation is completely
different, then we do not need a functor. Can just use ‘if else’. We should rename
runBulkAreaCalculations though. I have mapped this out in the GI code over the summer and need more
time to explain it in detail.

2) What tells the code to grab inputs from the GI structure in the config file rather than bulk area, and
how does the code keep track of which structure it is running? For example, bulk area vs. rain garden vs.
rain barrel. We can start with just bulk area & rain garden only, but we should keep in mind the need for
multiple GI types and even multiple instances of each structure type.

The ‘type’ tag determines how the code will treat the structure. All data related to a structure is stored
within a data folder. To get the type, folder->ParamStringDict["Type"] (see code below). We can easily
have multiple types and more than one of each. In the config file, DataOrganizer corresponds to an
instance of the DataOrganizer *organizer class. This class contains a container called DataDrawers.
For each DataDrawer tag in the config, a new vector of folders is added to this container. The size of
each vector corresponds to the number of DataFolder xml elements enclosed. In the below xml
example, there is only one DataDrawer with one DataFolder of type BulkArea. We keep track of each
folder by its position within the vector of vectors. So we can think of this BulkArea folder as in the first
position in the first drawer. Think of a filing cabinet where you open up the first drawer and pull out the
first filing folder. If you want to add RainGarden you can place it in the same drawer or a different one. If
you place in the same drawer, then the size of DataDrawers would remain 1 and the size of the vector at
position 0 would increase to 2.

46

If you want to add two more BulkArea structures you can place it in the same drawer or a different one.
If you place in the same drawer, then the size of DataDrawers would remain 1 and the size of the vector
at position 0 would increase to 3. You distinguish between the three

organizer->DataDrawers[0][0]

organizer->DataDrawers[0][1]

organizer->DataDrawers[0][2]

<DataOrganizer>

 <DataDrawer>

 <DataFolder>

 <Type>BulkArea</Type>

 <AreaPer>1.0000</AreaPer>

 <Area>161440000</Area>

 <TreePerviousCover>0.363</TreePerviousCover>

 <TreeImperviousCover>0.05</TreeImperviousCover>

 <ShortVegCover>0.297</ShortVegCover>

47

 <SoilCover>0.007</SoilCover>

 <ImperviousCover>0.283</ImperviousCover>

 <DCIA>0.2685</DCIA>

 <ImpDepStorage>2.5</ImpDepStorage>

 <PerDepStorage>1.0</PerDepStorage>

 </DataFolder>

<DataFolder>

 <Type>BulkArea</Type>

 <AreaPer>1.0000</AreaPer>

 <Area>161440000</Area>

 <TreePerviousCover>0.363</TreePerviousCover>

 <TreeImperviousCover>0.05</TreeImperviousCover>

 <ShortVegCover>0.297</ShortVegCover>

 <SoilCover>0.007</SoilCover>

 <ImperviousCover>0.283</ImperviousCover>

 <DCIA>0.2685</DCIA>

 <ImpDepStorage>2.5</ImpDepStorage>

 <PerDepStorage>1.0</PerDepStorage>

 </DataFolder>

 <DataFolder>

 <Type>BulkArea</Type>

 <AreaPer>1.0000</AreaPer>

 <Area>161440000</Area>

 <TreePerviousCover>0.363</TreePerviousCover>

 <TreeImperviousCover>0.05</TreeImperviousCover>

 <ShortVegCover>0.297</ShortVegCover>

 <SoilCover>0.007</SoilCover>

 <ImperviousCover>0.283</ImperviousCover>

 <DCIA>0.2685</DCIA>

 <ImpDepStorage>2.5</ImpDepStorage>

 <PerDepStorage>1.0</PerDepStorage>

 </DataFolder>

 </DataDrawer>

 </DataOrganizer>

In the main branch of the Unified code in BuildDataOrganizer class, it not possible to add a

folder with any other type than BulkArea (Oct 2018). This stop is in place because over the

summer how to handler land cover hadn’t yet been ironed out.

48

You can refer to BuildGrid.cpp in the GI code to see how I was thinking this might be
straightened out.

GI Surface Layer

The Surface Layer is used to describe the surface properties of Bioretention, Green Roofs, Rain Gardens,
Permeable Pavement, Infiltration Trenches, Roof Disconnections, and vegetative Swales. These
properties are:

1. Surface Berm Height (or Storage Depth, m)

When berms are present, the berm height (surfaceBermHeight_m, in m) is the maximum depth to which
water can pond above the surface of the unit before emergency flow (overflow) occurs. For Vegetative
Swales it is the height of the trapezoidal cross section. Rain Barrel with berm height will send flow to the
storage via berm outlet, Rain Barrel without berm height will get the flow directly from the downspout.

2. Surface Outlet Height (m)

Height of GI surface outlet, below the Surface Berm Height, above which water discharges out (outflow).

3. Surface Void Ratio

Range from 0 to 1, defines void space in GI surface layer. surfaceVoidRatio = 1 if all surface volume is
voids, surfaceVoidRatio = 0 if all surface volume is solids or vegetation. This value may be as high as 0.8
to 0.9 for very dense vegetative growth.

4. Surface Roughness

 GI Config Instruction (Dec 23, 2021)

49

Range from 0 to 1, Manning's n for surface outflow, it must be larger than zero to compute surface
outflow velocity.

5. Surface Slope (m/m)

Range from 0 to 1, slope of surface layer, used to compute surface outflow velocity.

6. Swale Side Slope (m/m)

Side slope (H:V) of of the side walls of a swale unit's cross section, units m/m. This value is ignored for
other types of GIs.

GI Pavement Layer

1. Pave Thickness

The thickness of the pavement layer (m). Typical values are 0.1 to 0.15 m.

2. Pavement Void Ratio

Range from 0 to 1, defines porosity of GI pavement as ratio of void volume to total volume. Typical
values for pavements are 0.11 to 0.18, units m3/m3.

3. Impervious Surface Fraction

Range from 0 to 1, unit fraction. It’s the ratio of impervious paver material to total area for modular
systems; 0 for continuous porous pavement systems.

4. Pavement Permeability

Permeability of the concrete or asphalt used in continuous systems or hydraulic conductivity of the fill
material (gravel or sand) used in modular systems. The permeability of new porous concrete or asphalt
is very high (e.g., tens of m/hr) but can drop off over time due to clogging by fine particulates in the
runoff. Units m/hr.

5. Pavement Clogging Factor

Defines number of pavement void depths treated before completely clogged. Use a value of 0 to ignore
clogging. Clogging progressively reduces the pavement's permeability in direct proportion to the
cumulative volume of runoff treated.

If one has an estimate of the number of years Yclog it takes to fractionally clog the system to a degree
Fclog, then the Clogging Factor (CF) can be computed as:

log log(1)(1) / (1)c a cCF Y P CR VR VR ISF F T = + + − 

where aP is the annual rainfall amount over the site, CR is the pavement's capture ratio (area that

contributes runoff to the pavement divided by area of the pavement itself), VR is the system's Void

Ratio, ISF is the Impervious Surface Fraction, and T is the pavement layer Thickness.

50

As an example, suppose it takes 5 years to completely clog a continuous porous pavement system that
serves an area where the annual rainfall is 36 cm/year. If the pavement is 6 cm thick, has a void ratio of
0.2 and captures runoff only from its own surface (so that CR = 0), then the Clogging Factor is 5 x 36 x 1 x
(1 + 0.2) / 0.2 / 1 / 6 / 1 = 180.

6. Pavement Regeneration Days (Regeneration Interval)

The number of days that the pavement layer is allowed to clog before its permeability is restored,
typically by vacuuming its surface. A value of 0 (the default) indicates that no permeability regeneration
occurs.

7. Pavement Regeneration Fraction

The fractional degree to which the pavement's permeability is restored when a regeneration interval is
reached. A value of 1 indicates complete restoration to the original permeability value. Once a
regeneration occurs the pavement begins to clog once again at a rate determined by the Clogging
Factor.

GI Soil Layer

This part describes the properties of the engineered soil mixture used in Bioretention, Rain Garden,
Infiltration Trench types, Green Roof and the optional sand layer beneath permeable pavement. These
properties are:

1. Soil Thickness

The thickness of the soil layer, units m. Typical values range from 0.45 to 0.9 m for Rain Gardens,
Bioretention units, but only 0.075 to 0.15 m for green roofs.

2. Soil Porosity

Range from 0 to 1, defines the volume of pore space relative to total volume of soil (as a fraction).

3. Soil Field Capacity

Range from 0 to 1, defines the volume of pore water relative to total volume after the soil has been
allowed to drain fully (as a fraction). Below this level, vertical drainage of water through the soil layer
does not occur.

4. Soil Wilting Point

Range from 0 to 1, defines the volume of pore water relative to total volume for a well dried soil where
only bound water remains (as a fraction). The moisture content of the soil cannot fall below this limit.

5. Soil Conductivity

Hydraulic conductivity K0 for the fully saturated soil (m/hr).

6. Soil Conductivity Slope

Reduces GI soil percolation rate in negative exp term; 0 = no reduction. Unitless.

51

Note that SoilPercolation_m = SoilHydraulicConductivity_m_p_dt * exp(
SoilSaturation_Deficit_m3_p_m3 * soilCondSlope)

7. Wetting Front Suction

WFS is the average value of soil capillary suction along the wetting front (m). This is the same parameter
as used in the Green-Ampt infiltration model.

GI Storage Layer

This part describes the properties of the crushed stone or gravel layer used in all GI devices. For Roof
Disconnection, storage is optional, it can be rain barrel.

1. Storage Thickness (or Barrel Height)

This is the thickness of a gravel layer or the height of a rain barrel (inches or mm). Crushed stone and
gravel layers are typically 0.15 to 0.450 m. Height of a rain barrel for single family home range from 0.6
to 0.90 m.

2. Storage Void Ratio

The volume of void space relative to the total volume in the layer. Typical values range from 0.5 to 0.75
for gravel beds. For Rain Barrel, it's 1.

The following data fields do not apply to Rain Barrels (remove or set to 0).

3. Seepage Rate

The rate at which water seeps into the native soil below the layer (m/hour). This would typically be the
Saturated Hydraulic Conductivity of the surrounding subcatchment if Green-Ampt infiltration is used or
the Minimum Infiltration Rate for Horton infiltration. If there is an impermeable floor or liner below the
layer then use a value of 0.

4. Clogging Factor

Total volume of treated runoff it takes to completely clog the bottom of the layer divided by the void
volume of the layer. Use a value of 0 to ignore clogging. Clogging progressively reduces the Infiltration
Rate in direct proportion to the cumulative volume of runoff treated and may only be of concern for
infiltration trenches with permeable bottoms and no underdrains. Refer to the Pavement Layer page for
more discussion of the Clogging Factor.

GI Drain System

GI storage layers can contain an optional drainage system that collects water entering the layer and
conveys it to a conventional storm drain or other location, which can be different than the outlet of the
GI's subcatchment. Drain flow can also be returned it to the pervious area of the GI's subcatchment. The
drain can be offset some distance above the bottom of the storage layer, to allow some volume of
runoff to be stored (and eventually infiltrated) before any excess is captured by the drain. For Rooftop
Disconnection, the drain system consists of the roof's gutters and downspouts that have some
maximum conveyance capacity.

1. Drain Coefficient

52

Increases drainage rate, unitless. drainOrificeQ_coef > 0 means storage drain is open and draining
groundwater, drainOrificeQ_coef = 0 means storage drain is closed and retaining groundwater.

2. Drain Exponent

Range from 0 to 1, increases drainage rate, unitless. A typical value for n would be 0.5 (making the drain
act like an orifice).

Note that runoffStorageDrain = drainOrificeQ_coef * storageDepthHead ^ drainOrificeQ_exponent

3. Drain Offset Height

This is the height of the drain line above the bottom of a storage layer or rain barrel (m).

4. Rain Barrel Drain delay (for Rain Barrels only)

Time after rain stops when rain barrel drain is opened, in hr. A value of 0 signifies that the barrel's drain
is always open and drains continuously. This parameter is ignored for other types of GI practices.

GI Drainage Mat

Green Roofs usually contain a drainage mat below the soil media and above the roof structure. Its
purpose is to convey any water that drains through the soil layer off of the roof.

1. Drainage Mat Thickness

The thickness of the mat, in m. It typically ranges from 2 to 5 cm (0.002 to 0.005 m).

2. Drainage Void Fraction

Range from 0 to 1, the ratio of void volume to total volume in the mat. It typically ranges from 0.5 to 0.6.

3. Drainage Roughness

This is the Manning's n constant used to compute the horizontal flow rate of drained water through the
mat.

GI Pollutant Removal

This part allows one to specify the degree to which pollutants are removed by an GI control as seen by
the flow leaving the unit through its underdrain system. Thus it only applies to GI practices that contain
an underdrain.

Pollutant (TSS, BOD, COD, TP, SolP, TKN, NO2_3, Cu, Pb and Zn) percent removal efficiency need to be
given in %, range from 0 to 100.

As an example, if the runoff treated by the GI unit had a TSS concentration of 50 mg/L and a removal
percentage of 90, then if 1 m3/s flowed from its drain into a conveyance system node the mass loading
contribution to the node would be 50mg/L x (100 - 90)/100 x 1m3/s *1000 L/m3= 5000 mg/s.

